A Framework for Efficient Data Analytics through
Automatic Configuration and Customization of
Scientific Worktlows

Matheus Hauder
Institute for Software and Systems Engineering
University of Augsburg
Universititsstrae 6a
Augsburg, D 86135
Email: hauder @student.uni-augsburg.de

Abstract—Data analytics involves choosing between many dif-
ferent algorithms and experimenting with possible combinations
of those algorithms. Existing approaches however do not support
scientists with the laborious tasks of exploring the design space of
computational experiments. We have developed a framework to
assist scientists with data analysis tasks in particular machine
learning and data mining. It takes advantage of the unique
capabilities of the Wings workflow system to reason about
semantic constraints. We show how the framework can rule out
invalid workflows and help scientists to explore the design space.
We demonstrate our system in the domain of text analytics, and
outline the benefits of our approach.

I. INTRODUCTION

Advanced data analytics skills require that scientists have
knowledge beyond understanding different algorithms and
statistical techniques. State-of-the-art data analytics often in-
volves multi-step procedures with sophisticated techniques
such as effective feature selection methods, algorithm portfo-
lios and ensembles, and cross-validation. For example, a basic
protein secondary structure prediction framework includes
sequence analysis, feature extraction, and classification as well
as post-processing steps. Workflows are an ideal paradigm for
capturing and sharing such complex analysis methods [1], [2]
since they can be assembled from individual software tools,
then shared and reused as end-to-end methods [3].

A scientist working on the analysis of a dataset must explore
many possible methods or combinations of algorithms until an
appropriate one is found. A workflow framework facilitates
this process by supporting workflow modifications, that is,
taking an existing workflow and adding/removing steps to
create a new workflow [4], [5]. For example, a workflow
with a step implemented as a hierarchical clustering algorithm
could be easily modified by replacing that step by a k-means
clustering algorithm. Currently, these modifications have to be
designed and carried out manually by the scientists, with little
assistance from the system.

This exploration of the design space of workflows remains
a very laborious process. First, many combinations of algo-
rithms may not be compatible with one another. Scientists

Yolanda Gil
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292
Email: gil@isi.edu

Yan Liu
Computer Science Department
University of Southern California
941 Bloom Walk
Los Angeles, CA 90089-0781
Email: yanliu.cs@usc.edu

have to take into account myriad of constraints in order to
track which algorithm combinations are valid. Second, some
algorithms may not be appropriate for the dataset at hand
or require specific data pre-processing steps. Moreover, the
best algorithms for a dataset may not be the best for another
dataset. For example, a feature selection strategy may not work
for a similar dataset with different statistical characteristics.
Third, focusing on alternative algorithms for a step may not
be worthwhile because other steps are more influential. For
example, a good approach to the selection of features to train
a classifier is often more important than the type of classifier
being used.

The goal of our work is to enable scientists to explore
the design space of complex analytic methods in a more
systematic and efficient manner. We use workflows as a
paradigm to capture complex end-to-end analysis methods. We
build on the Wings workflow system [6], which uses semantic
workflow representations that capture the requirements and
semantic constraints of individual steps and datasets explicitly
[7], as well as workflow reasoning algorithms to generate
possible combinations of workflow components systematically
and to validate them [8]. Our approach is novel because it
supports:

o Easily configurable abstract workflows: Our semantic
workflows can represent abstract steps that can be special-
ized by many software components. Those components
may reflect different algorithms as well as alternative
implementations with varying performance and run-time
requirements. Each algorithm implementation may in-
clude constraints regarding the type and characteristics
of data that they are appropriate for. Workflows represent
general methods, and are easily configured as executable
workflows by specializing any abstract components.

« Efficient experimentation with workflow specializa-
tions: Our workflow reasoning algorithms can automat-
ically generate possible specializations of components,
and reject any specializations that violate constraints of

individual steps. The system is given a workflow with
abstract steps and a dataset, and can generate all valid
specializations that can be submitted for execution.

The main contribution of this paper is the demonstration of
this approach with an implemented framework for text analytic
tasks that captures state-of-the-art methods as workflows and
enables efficient experimentation with different algorithms
and datasets. This framework includes: 1) abstract workflows
for both supervised classification and unsupervised clustering,
2) more than 50 components for text analytics, data min-
ing, and machine learning, and 3) several commonly used
datasets in the document classification research community.
The framework makes it very efficient for a user to learn
a new method as a workflow, to experiment with different
algorithms and to quickly understand the tradeoffs of choosing
different algorithms to analyze a new dataset. Our framework
can easily be applied to other scientific data analysis tasks.
The Wings workflow system and the text analytics framework
are available for download under an open source license from
http://wings.isi.edu.

The paper begins with an overview of our motivation and
our approach, illustrating the main concepts with examples
from the domain of text analytics. Next, an implementation
of this approach is described using the Wings workflow
system, including the workflows, the software components,
and the semantic reasoning used in the workflow system.
Finally, we illustrate the advantages of our framework and
show experimental results of applying the framework for text
analytics tasks in real world datasets.

II. MOTIVATION

Our main motivation is to help scientists to carry out ex-
periments more efficiently, addressing issues that have broader
implications in education of novice researchers and students,
and in fostering cross-disciplinary work.

Scientists working on data mining and machine learning
tasks should be able to design workflows which are appro-
priate for their own datasets in an efficient manner. Scientists
often speak about the data deluge, but not so much about
the software deluge. New algorithms and software packages
are published constantly, which is difficult for scientists to
keep up with the state of the art. Experts can read and be
aware of the latest algorithms, but currently do not have
a practical means to obtain hands-on experience with them
because they require a large investment of effort. We envision
the workflow framework of text analytics serves as a aid for
scientists to sustain learning as a long-term activity throughout
a professional career, enabling experts to keep up with research
innovations in an easier, time-efficient, and hands-on manner.

Novice researchers working on data mining for scientific
discovery need to be extremely careful to follow correct pro-
cedures rigorously. For example, bioinformatics is an actively
pursued area in which researchers utilize machine learning
and data mining algorithms to reveal significant insights from
biology data and to make predictions on structures or functions
of unknown proteins/genes. Many classes on bioinformatics

teach student basic analysis algorithms, such as sequence
alignment, protein structure prediction algorithms, or graph-
structure learning algorithms. However, the tradeoffs between
different algorithms and their impact on the overall accuracy
of the system depend on the application and the dataset. For
example, in protein structure prediction, one key step is to find
sequences similar to the target protein with a specific similarity
cutoff. The subsequent prediction performance is not only
determined by the classifiers applied, but also significantly
influenced by (more significantly) the similarity cutoff, which
is difficult to decide for novice researchers. Each data analytic
task in bioinformatics can be associated with an appropriate
workflow design process, and facilitating this try and test
process is extremely important in order to achieve better
prediction performance and even more important to gain
correct scientific results.

Our system can also help students to acquire practical skills.
Students may take courses about statistical techniques and
machine learning algorithms but rarely have the resources
to learn in practical settings. For example, in text analytics
the prediction accuracy of text classifiers on one dataset can
differ 1-10 % depending on how the unstructured texts are
converted to feature vectors of words and how many features
are selected. In contrast, once the data is preprocessed, the
difference between which classifier (whether a support vector
machines or Naive Bayes) is applied on the same feature vector
is only 0.5-5 %.

Researchers in other disciplines can use our framework to
acquire expertise in a new area. For example, social science
researchers have access to vast amounts of text data on the web
(blogs, microblogs, mailing lists, etc.) that can be mined, but
often lack text analytic skills. Similarly, there are reams of text
data available in mobile devices and other human-computer
interfaces [9]. Developing an appropriate setup for any real
problem (e.g., email prioritization) requires good understand-
ing of the state-of-the art methods in that domain (e.g., text
analytics), placing a barrier for students or researchers who do
not have easy access to that expertise. Moreover, significant
software infrastructure needs to be deployed in order to apply
and observe different techniques in a real problem domain,
requiring substantial investment often in the order of months
or years which deters students and researchers in other areas
from attempting to do so. Setting up this infrastructure requires
programming skills, making it infeasible for students and
researchers without significant computer science background.

Finally, our framework can also target researchers that have
developed initial data mining applications and are seeking to
improve the performance of their application. A good example
from our prior work is compiler optimization, where the use of
machine learning techniques is being investigated in order to
rapidly customize optimizations to new computer architectures
that come out every few months. In a recent survey of this
research area, we found that most of the work focuses on
decade old techniques [10]. Lowering the cost of learning text
analytics skills by easily experimenting with different machine
learning algorithms would enable new levels of performance

in many application areas.

III. APPROACH

We have developed a framework for capturing complex text
analytic processes and for efficient exploration of different
algorithms that can be used as steps in those processes.
We achieved this by applying scientific workflows [1] and
used a workflow management system. This section describes
our framework at a high level, next section describes our
implementation of this framework in detail.

A. Flexibility of workflow representations

From a high level perspective document classification con-
sists of a number of computation steps. These steps usually
include document preprocessing, feature selection, training
and classification. A common set of steps is illustrated in
the workflow in Figure 1. In general, a correlation score is
computed for each word, followed by a second step that selects
the words with the best score as features for the machine
learning algorithm. This is crucial to improve the classification
results and to minimize the size of the training set.

Documents

<<abstract>>
Correlation Score

Threshold
Feature
Selection
Selected
Data
<<abstract>>
Modeler

Test Data

<<abstract>>

Classifier

Fig. 1: Exemplary workflow with abstract computations

The algorithms for each step of this workflow are complex,
and are often already implemented and available as open
source software. Therefore it is important to support the
following capabilities:

o Abstract steps: Steps in the workflow that can be re-
placed by other algorithms are represented as abstract
steps or components. The correlation score, modeler and
classifier in Figure 1 are examples of abstract compo-
nents. Every abstract step can be specialized by one of

several concrete executable steps. These concrete compo-
nents have exactly the same interfaces and do not overlap
with those from other abstract components.

o Reusing existing software: A component-based ap-
proach [11] enables the reuse of software in a workflow
management system. This is useful because there are
many existing implementations of algorithms in different
languages.

+ Metadata information: The information about the type
of data necessary for a computational step and the re-
quirements it has to fulfill is represented as the meta-
data information. This information is used to validate
the workflow and create provenance information for the
executed experiments.

Note that other work defined abstract workflows as those
that do not contain references to the execution resources (e.g.,
tasks do not have assigned execution host) [12]. Here, abstract
workflows do not contain references to executable codes for
workflow components.

B. Automatic configuration of the workflow

Many different algorithms for the same steps are available
in text analytics and handling these algorithms is one of the
major ways to support researchers. By making it possible to
generate workflows with different combination of algorithms,
the comparison of the different results becomes very easy
for researchers trying to find out which combinations of
algorithms perform best for a given dataset. An example for
document classification is to find out which machine learning
algorithm performs best for a given dataset. This requires the
workflow system to specialize an abstract workflow like the
one shown in Figure 1 by systematically searching through all
combinations possible and generating executable workflows.
It also requires that the workflow system checks whether the
combination of algorithms for a given workflow is valid, and
reject it if it is not. For example, if a support vector machine
(SVM) is used as a modeler, then the classifier must be an
SVM classifier.

C. Customize workflows to data and execution environment

With the specialized steps selected during the configuration,
the workflow has to be customized further in order to be
executed. Depending on the selected dataset for the docu-
ment classification, the workflow system should select suitable
parameters for the algorithms in the workflow. This can be
for instance the total number of target labels for a clustering
algorithm. Another example is the selection of algorithms and
parameters based on the size of a dataset. This information can
be very important to estimate the execution time and therefore
be relevant for the selected machine learning algorithm. In
some cases it might be useful not to execute a workflow or
to reduce the dataset in case the number of features exceeds
a given value.

Similarly, it is also necessary to customize the workflow
for a specific execution environment. Some algorithms can
be run on a desktop computer in minutes for a reasonable

sized dataset, others may take many hours of computation.
The workflow system therefore must be sensitive to the
computation needed by each algorithm and convey to the user
the cost of running them with their dataset.

D. Assisting researchers and reducing complexity

A workflow system can offer a unique framework for re-
searchers to experiment with different algorithms and datasets
enabling them to focus on the overall performance of the alter-
native workflows without paying attention to details needed to
set up algorithms. The codes are already installed and are part
of the workflow system, so there is no need to install new
software in order to experiment with a different algorithm.
The configuration and the customization of the workflows
helps them to focus on their goals, because it automates
and manages recurring tasks. Students also benefit from these
capabilites tremendously. It is often challenging for students
to configure and use complex machine learning algorithms
with their individual constrains. This circumstance affects the
learning progress negatively and is an additional obstacle
for students. Our approach prevents common problems by
validating the workflows prior to their execution [13]. Invalid
combinations of components or the wrong use of input datasets
and parameters abort with an error, so that a student can
comprehend errors in early stages.

IV. IMPLEMENTATION

In our work we use the Wings workflow system [6],
[8], [7]. Wings is unique in that it uses semantic workflow
representations to describe the kinds of data and computational
steps in the workflow. Wings can reason about the constraints
of the workflow components (steps) and the characteristics of
the data and propagate them through the workflow structure.
In contrast, most other workflow systems focus either on
execution management or on including extensive libraries of
analytic tools [4], [14], [15]. Semantic reasoning is used to
provide interactive assistance and automation in many aspects
of workflow design and configuration. Elsewhere we describe
the algorithms used in Wings to specialize abstract workflows
and to explore the experiment design space [6], [8]. In [13], we
show details of the interaction of a user with Wings through
its web-based user interface.

We describe in this section the text analytic workflows that
we developed. The software components can have specific
requirements on the datasets they are processing. These re-
quirements are expressed in metadata on the datasets. For
document classification and clustering, it is necessary to
create the datasets and components with their metadata and
requirements. Once the components and datasets are created
the actual workflows can be designed.

A. Datasets

Text analytics research uses many different datasets to
perform experiments and to compare the results along with
different algorithms. We selected some very common datasets
and use them in the prototype to run experiments. The WebKB

[16] dataset is a set of classified web pages. It was collected
from computer science departments of various universities.
The 20 Newsgroups [17] dataset contains newsgroup docu-
ments divided by topic. The Reuters [18] dataset contains
manually classified documents from the Reuters newswire.
Table I summarizes the datasets with some of their metadata
characteristics. Each dataset has a different number of labels
for classification and each document can be either multi-
labeled or single-labeled. Another property of the dataset is
the total number of documents, which is valuable information
since it tells us something about the size of the data sets.

TABLE I: datasets with their properties

[dataset [# Label | Label | Total # Docs |
WebKB 4 Single | 4199
20 Newsgroups | 20 Single | 18821
Reuters R8 8 Single | 7674
Reuters R52 52 Single | 9100
Reuters R10 10 Multi 7803

All of the datasets have documents in the same data format
and are split into a training and a testing subsets. The metadata
information from Table I are stored in the Wings Data Catalog
and are represented in RDF.

B. Components

Figure 2 shows the most important components from this
domain. In addition to these, there are more steps for the
preprocessing of the datasets and for handling multi-labeled
datasets. The various levels in the figure have different
meanings. The component node at the top points to abstract
components on the second level of the figure. The classifier
and modeler components are shown in the same node. They
include Naive Bayes (NB), Gaussian Mixture Models (GMM),
k-Nearest Neighbor (kNN), Decision Tree (C4.5) and Support
Vector Machines (SVM). The implementations are used from
the framework Weka [19]. For the SVM we also use the LIB-
LINEAR [20] implementation. It achieves similar performance
without using kernels for document classification, resulting in
much faster overall execution time. Term weighting is one of
the pre-processing steps to create a word vector space model of
the documents. The rerm weighting component class includes
inverse document frequency (IDF), term frequency (TF) and
the common term frequency-inverse document frequency (TF-
IDF). We implemented these algorithms ourselves both in
Java and Python. We used a stemmer to handle morphological
variation prior to the application of the term weighting on the
dataset. We used the common Porter stemmer in his original
C and a Java version as well as the Lovins stemmer in Java.
The feature selection component is used to select the best
features by a given score. The score for the feature selection
is computed by using one of the correlation score compo-
nents. We have included the chi-square (CS), information
gain (IG) and mutual information (MI) [21] algorithms. For
document clustering we use implementations from CLUTO
[22]. CLUTO is a software package written in C for clustering

Component

Stemmer

.

Porter

TermWeighting

/ /\TF

TF_IDF FeatureSelection IDF Lovins

Python U Java CIC++

A T

Classifier/Modeler CorrelationScore Clustering

/NN

agglo graph direct

Weka (Java) Matlab CLUTO (C)

Fig. 2: Hierarchy of abstract component classes and concrete components, indicating their implementation

with various ways to analyze the characteristics of the clusters
for low- and high-dimensional data.

Some components have constraints as pre- and postcondi-
tions on the datasets they use. The constraints for the datasets
are expressed in the Jena rule syntax, which can be found in
[23]. Jena is a framework written in Java and can be used as
a rule-based inference engine in combination with RDF. We
use several types of rules:

o Validation rules: A rule that makes sure only single-
labeled datasets are used for the correlation score compo-
nent is shown in Listing 1. It is applied on the correlation
score component and selects the input dataset called
feature. In case the multi-label property of the dataset
is true, the correlation score component is invalidated.
This means that no workflows will be generated with that
component.

(?c rdf:type pcdom:CorrelationScoreClass)
(?c pc:hasInput ?idv)
(?idv pc:hasArgumentID "Feature")

(?idv dcdom:isMultiLabel "true"” "xsd:boolean)
-> (?c ac:isInvalid "true"” "xsd:boolean)

Listing 1: Using only single-label data for correlation score

o Metadata generation rules: Some rules describe the
properties of output datasets of components. The Porter
stemmer is a concrete implementation of the abstract
stemmer component. In Listing 2 a rule sets a property
called usedStemmer in the output dataset to denote it was
processed through a Porter stemmer. This is often very
useful for other components to check which were applied.
(?c rdf:type pcdom:PorterStemmerClass)

(?c pc:hasOutput ?odv)

(?odv pc:hasArgumentID "Stem")
-> (?2odv dcdom:usedStemmer "PorterStemmer")

Listing 2: Setting the used stemmer

o Execution based component selection: The workflow
can be executed on different execution environments.
It can be executed with local resources or with high-
performance cyberinfrastructure resources. The current
execution environment is compared with the metadata
from the classifier component. Components with inap-
propriate execution environments are rejected during the
validation process.

?c rdf:type pcdom:LibSVMClass)

?c pc:hasInput ?idv)

?idv pc:hasArgumentID "Model")

?idv dcdom:usesExecEnvironment "localhost")
"true"” "xsd:boolean)

(
(
(
(
-> (?2c ac:1isInvalid

Listing 3: Selecting component for execution environment

C. Sample Workflow

The components and datasets described in the previous
sections are used to create the actual workflows in Wings.
Figure 3 illustrates the entire document classification workflow
using state-of-the-art methods. The rectangles correspond to
components, while the ovals are datasets in green or param-
eters in orange. The abstract components are marked with
dashed boxes. The workflow starts with the training and testing
sets at the very beginning. Both datasets go through the
same preprocessing steps in the workflow. After stop words
and small words (e.g., “the”, ”of”’) are removed, the datasets
are stemmed with one of the possible concrete stemmer
implementations. The stemmed datasets are used to generate a
word vector space model representation using a term weighting
component. The last preprocessing step formats the datasets
into a sparse data format to reduce the memory usage, because
the word vector representation is populated primarily with
zeros. A vocabulary with all words appearing in the datasets
is needed for this step since an unique identifier has to be
assigned for every word. After both training and test set are
preprocessed, feature selection is applied on the training set.
First, a correlation score is computed for every feature, then
the best features are selected based on the individual scores
by the parameter percentage. The selected features are now
used to train a model. The classifier uses the generated model
to compute the predictions for the test data that contains
parameters for the classifier. The very last component is only
necessary to compute accuracy metrics based on the prediction
from the classifier. Each workflow also has rules to express
constraints:

« Constraints on data: An important constraint is that the
training and testing data are not equal so the preprocess-
ing components should use the same files:

TrainDoc wflow:hasDifferentDataFrom TestDoc
TrainVoc wflow:hasSameDataAs TestVoc

TrainWords wflow:hasSameDataAs TestWords

Listing 4: Training and test sets have to be different

Constraints on components: Classifier and modeler
always have to use the same machine learning algorithm.
As an example one can use a support vector machine to
train a model and then use this model with a support vec-
tor machine classifier. Invalid combinations are rejected
by this rule.

(?c rdf:type pcdom:ClassifierClass)

(?c pc:hasInput ?idv)

(?c pc:hasOutput ?odv)

(?idv pc:hasArgumentID "Model")

(?odv pc:hasArgumentID "Prediction")

(?idv dcdom:usedModeler ?sl)

(?o0dv dcdom:usedClassifier ?s2)

notEqual (?sl, ?s2)
-> (?c ac:isInvalid "true

xsd:boolean)

Listing 5: Use the same algorithm for classifier and modeler
steps

Moreover, we have other workflows to do document cluster-
ing and generate visualizations. A scientist might use another

I [}
TermWelghtlng
=== workflow to visualize the correlation score in order to adjust

the settings for a dataset.

@ @ V. RESULTS
We have executed the workflow from Figure 3 with different

FormatArff configurations and summarize the results next. A scientist
executing experiments is supported by the system in several

ways:
? % o Fewer workflows generated: Generating all possible
component combinations of the workflow illustrated in

==t==1 = =Tt ——=) . .
([stemmer |, \Correlatuonsﬁore |" Figure 3 would result in some workflow instances that
TN T are not executable or produce wrong results. The overall
= number of possible specialized workflows in this example
@ | “’“ workflow template is 2,700, which are all the possible
! ‘ / combinations of concrete components. In our system,
||;e_rm_w:||;h;n;]| |Feature5elemoﬂ however, only valid combinations of the components are

-== -=- generated. The overall number of generated workflows
is already reduced to only 90 specialized workflows, all

@ @ # guaranteed to be valid.

o Automatic configuration and parameter setup: Many

|Formamrﬁ| |IMod'_erIer | of the used components in document classification require
==F = parameters, that can be elaborated from the metada of the

Y v used datasets. A typical example for this is the number

of labels in a dataset. This information can be used to set

the parameter to indicate the number of target clusters for

the clustering components.
| o Generating metadata for workflow results: The docu-
ment classification workflow can be executed in many dif-
ferent variations. With all the different implementations,
there are 90 different ways to execute the workflow. This
complexity of different possibilities to run experiments
makes it crucial to understand which algorithms were
applied to compute a specific outcome. This is achieved
by propagating all the metadata of a dataset through
the entire workflow using rules as in Listing 2. After a

I_ (I r —
Classifier

Fig. 3: Document classification workflow in Wings

component or applied a computation on a dataset, it stores
the changes in the metadata properties of the new dataset.
As an example the metadata generated for a computed

prediction file are summarized in Listing 6.
Prediction dcdom:usedTrainFile "WebKB_Train"
Prediction dcdom:usedTestFile "WebKB_Test"
Prediction dcdom:usedStemmer "PorterStemmer"
Prediction dcdom:usedTermWeighting "TF_IDE"
Prediction dcdom:usedModeler "NaiveBayes"
Prediction dcdom:usedClassifier "NaiveBayes"
Prediction dcdom:smallWordsSize 3
Prediction dcdom:selectedFeatures 10
Prediction dcdom:usedCorrelationScore
Prediction dcdom:isMultilLabel false

nagn
Listing 6: Metadata of the resulting Prediction

Keeping this provenance information along with the
datasets helps to comprehend how results were computed.
It also allows users to query across workflow executions
and find results based on their metadata (e.g., find all
predictions for WebKB dataset or from multi-label data).

« Heterogenous implementations: Figure 2 illustrates how
heterogenous the different component implementations
are. Users see the workflow’s abstract steps and do not
need to worry about what packages or implementations
are used in the end. A classifier might take advantage
of additional tools (e.g., Matlab) or use libraries. The
framework hides this details from the user and avoids
studying manuals and documentation for the different
technologies.

o Method synthesis based on execution environment:
In some situations a researcher might run the document
classification workflow on a smaller dataset or a subset to
figure out which algorithms perform best for the selected
dataset. He might also evaluate different parameter set-
tings to find suitable values for them. As he runs this
tests only on a small subset, he is likely to perform
well simply on a laptop or workstation. As soon as the
same researcher wants to apply his customized workflow
on a large scale dataset, he might consider executing
the workflows on a high-performance cyberinfrastructure.
Switching the execution environment causes the system to
select different algorithms and change parameter settings
for the components.

o Simplicity of use of sophisticated methods: The docu-
ment classification expertise is incorporated in the design
of the prototype workflow. This expertise contains the in-
formation about the necessary steps, their correct ordering
and the possible algorithms used for every step. Users can
now perform experiments with this workflow even when
they are not an experts in this domain. The necessary
user interactions are thus reduced to the selection of the
dataset and the algorithms one wants to use.

Figure 4 illustrates classification results from executing the
document classification workflow with two of the datasets and
varying term weighting, correlation score, machine learning
algorithms and different values for the feature selection.

We used a word list with the most common english words
to remove stop words and deleted words with less than 4
characters. The SVM together with chi-square and TF-IDF
performed best in our experiments.

VI. RELATED WORK

In [24], prominent members of the machine learning com-
munity argue for the need to share software and datasets
to facilitate experimentation and learning. There are already
widely-used libraries such as Weka [19]. The popularity of
these systems demonstrates the demand for accessible machine
learning codes. Although Weka provides basic functionality to
compose codes into workflows, it does not provide any pre-
defined workflows.

Gestalt [9] is a user-centered environment for data analytics
that is designed for programmers and guides them through
pipelines that include data cleansing and visualization steps.
It focuses on classification tasks. A workflow approach for
text analytics is used in the IBM UIMA system [25], but
it requires manual construction of the workflow including
the interfaces between different components. None of these
approaches provide a structured framework for exploration or
learning.

VII. CONCLUSION

We have presented a framework for text analytics that uses
semantic workflows to assist scientists to efficiently reuse
complex end-to-end methods and customize them to their
datasets. The framework automatically specializes abstract
workflows to systematically explore all valid combinations
of algorithms. The framework allows scientists to quickly
perform experiments with different methods, understand the
relative impact of different data preparation strategies, and to
explore the relative merits of different algorithmic choices and
their effect in the overall performance. The framework can be
easily adapted for other data analytics tasks in many scientific
domains.

There are several important benefits to our framework. The
overall number of generated experiments is much smaller,
because only valid workflows a generated and invalid ones are
rejected by the framework. The generated results are enriched
with provenance information collected during the workflow
execution. This is especially useful to comprehend the results
after many experiments with different components were exe-
cuted. The system also handles heterogenous implementations
depending on the current execution environment. A user
might switch the execution environment to run computations
on a high-performance cyberinfrastructure without having to
change the workflow. All these facilities reduce the necessary
user interactions and in the end hide complexity involved
in the execution and configuration of the experiments. We
believe this framework can have a broader impact as a learning
environment for novice researchers, students, and scientists in
other areas of data analytics.

085 == 0m == 9- - =6 - -0 -0 -~ O —— -,
b--o0---9---060---0-—< O-—-6--"6---0--90O- 4
0.9F A A A ©o
F — —-—=®8==-°"Fg - -0 -~ = -5 [0}
B - B 6,
0.85 X N
N
N
0.8F L
c
9
3 0750
4
[N \
0.7 o
065 !
06 Y
— & — TF-IDF, CS, Porter, NaiveBayes
0551 — © — TF-IDF, CS, Porter, LibSVM
— 8 — IDF, CS, Lovins, NaiveBayes
— © — TF, M|, Lovins, LibLINEAR
T T T T)

I I
60 50

Precision

0.9
o8l - T - s =
- - 0" -9 " "0 - - - -0 —-6---0__ o N
s i L S o
0.7F & - - _ N A
Dl “Q\\é}
06F —— O- - —H- - -3 - _ _ - -—-—g---B---0---H9-8 A
hﬂ
0.5
0.4r — 4 — TF-IDF, CS, Porter, NaiveBayes
— & — TF-IDF, CS, Porter, LibSVM
— 8 — CF, IDF, Porter, LIBLINEAR
— & — TF, M, Porter, LibSVM
0.3 | | | | | T T T T)
100 90 80 70 60 50 40 30 20 10 0

Percentage of features

(b) 20 Newsgroups

Fig. 4: Classification results for two of the datasets

100 90 80 70 40 30 20 10 0
Percentage of features
(a) Reuters R8
ACKNOWLEDGMENTS

This research arouse in association with the Elite Graduate
Program Software Engineering of the University of Augsburg,
Technical University Munich and the Ludwig-Maximilians-

Un
Sci

[5]

[6]

[9]

[10]

(11]

iversity Munich and was funded in part by the National
ence Foundation under award CCF-0725332.

REFERENCES

I. J. Taylor, E. Deelman, D. Gannon, and M. Shields, Workflows for
e-Science: Scientific Workflows for Grids. Springer-Verlag, 2006.

Y. Gil, “From Data to Knowledge to Dicoveries: Scientific Workflows
and Artificial Intelligence,” Scientific Programming, vol. 17, 2009.

D. De Roure, C. Goble, and R. Stevens, “The design and realisation
of the Virtual Research Environment for social sharing of workflows,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 561-567, 2009.
S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and
H. T. Vo, “VisTrails: Visualization meets Data Management,” in ACM
SIGMOD, 2006, pp. 745-747.

C. Wroe, C. A. Goble, A. Goderis, P. W. Lord, S. Miles, J. Papay,
P. Alper, and L. Moreau, “Recycling workflows and services through
discovery and reuse,” Concurrency and Computation: Practice and
Experience, vol. 19, pp. 181-194, 2007.

Y. Gil, V. Ratnakar, J. Kim, P. A. Gonzilez-Calero, P. Groth, J. Moody,
and E. Deelman, “WINGS: Intelligent Workflow-Based Design of Com-
putational Experiments,” in IEEE Intelligent Systems (IS’11), London,
UK, 2011.

Y. Gil, P. Groth, V. Ratnakar, and C. Fritz, “Expressive Reusable
Workflow Templates,” in Proceedings of the Fith IEEE International
Conference on e-Science, Oxford, UK, 2009.

Y. Gil, P. Gonzilez-Calero, J. Moody, and V. Ratnakar, “A Semantic
Framework for Automatic Generation of Computational Workflows
Using Distributed Data and Component Catalogs,” To appear in the
Journal of Experimental and Theoretical Artificial Intelligence, 2011.
K. Patel, N. Bancroft, S. Drucker, J. Fogarty, A. Ko, and J. A.
Landay, “Gestalt: Integrated Support for Implementation and Analysis
in Machine Learning Processes,” in Proceedings of the ACM Symposium
on User Interface Software and Technology UIST, 2010.

M. Hall, Y. Gil, and R. Lucas, “Self-Configuring Applications for
Heterogeneous Systems: Program Composition and Optimization Using
Cognitive Techniques,” in Proceedings of the IEEE, Special Issue on
Cutting-Edge Computing: Using New Commodity Architectures, vol. 96,
no. 5, 2008.

A. W. Brown, Large Scale Component Based Development.
Hall PTR; 1st edition, 2000.

Prentice

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda,
“Mapping Abstract Workflows onto Grid Environments,” Journal
of Grid Computing, vol. 1, no. 1, 2003. [Online]. Available:
papers/deelman-etal-jogc03.pdf

Y. Gil, V. Ratnakar, and C. Fritz, “Assisting Scientists with Complex
Data Analysis Tasks through Semantic Workflows,” in In Proceedings
of the AAAI Fall Symposium on Proactive Assistant Agents, Arlington,
VA, Nov. 2010.

T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe, “Taverna: Lessons in
creating a workflow environment for the life sciences,” Concurrency and
Computation: Practice and Experience, vol. 18, iss. 10, pp. 1067-1100,
2006.

M. Reich, T. Liefeld, J. Gould, J. Lerner, and J. P. Mesirov, “GenePattern
2.0,” Nature Genetics 38, vol. 5, doi:10.1038/ng0506-500, pp. 500-501,
2006.

(1998, Jan.) The 4 Universities Data Set. Carnegie Mellon University.
[Online]. Available: http://www.cs.cmu.edu/afs/cs/project/theo-20/www/
data/

(2008, Jan.) The 20 Newsgroups data set.
http://people.csail.mit.edu/jrennie/20Newsgroups/
(2004, May) Reuters-21578. Carnegie Group, Inc. and Reuters,
Ltd. [Online]. Available: http://www.daviddlewis.com/resources/
testcollections/reuters21578/

I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. J. Cun-
ningham, “Weka: Practical Machine Learning Tools and Techniques with
Java Implementations,” ICONIP/ANZIIS/ANNES, pp. 192-196, 1999.
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal of
Machine Learning Research, vol. 9, pp. 1871-1874, Dec. 2008.

Y. Yang and J. O. Pedersen, “A Comparative Study on Feature Selection
in Text Categorization,” in International Conference on Machine Learn-
ing (IDCML’97). Morgan Kaufmann Publishers, 1997, pp. 412-420.
G. Karypis. (2006, Oct.) CLUTO - Software for Clustering High-
Dimensional Datasets. Karypis Lab, University of Minnesota. [Online].
Available: http://glaros.dtc.umn.edu/gkhome/views/cluto
(2011, Jun.) Jena: Semantic web framework. HP-Lab.
Available: http://jena.sourceforge.net/documentation.html

S. Sonnenburg, S. Bengio, L. Bottou, Y. LeCun, and K.-R. Miiller,
“The Need for Open Source Software in Machine Learning,” Journal of
Machine Learning Research, 2007.

D. Ferrucci and A. Lally, “UIMA: An architectural approach to unstruc-
tured information processing in the corporate research environment,”
Nat. Lang. Eng., vol. 10, pp. 327-348, 2004.

[Online]. Available:

[Online].

